

Auditing and M&V Presentation

Developed for Powerful Facility Energy Conference 2022

Jamil Aljasir, EMP, CxA, LEED BD+C

Brad Sharp, CHC

Irish Saying: You'll never plough a field by turning it over in your mind.

Audits

Focused on Energy Savings Most used/accepted guidelines:

Standard for Commercial Building Energy Audits

STANDARD

ANSI/ASHRAE/ACCA Standard 180-2018 (Supersedes ANSI/ASHRAE/ACCA Standard 180-2012)

Standard Practice for Inspection and Maintenance of Commercial Building HVAC Systems

When to Audit?

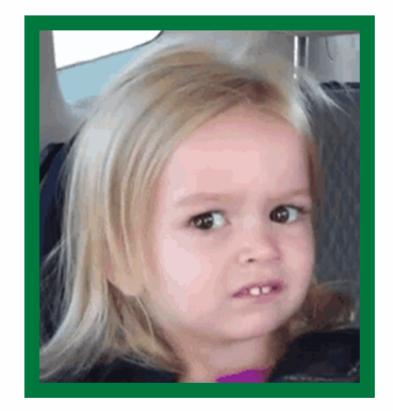
- Know your Energy Use Index (EUI)
 - EnergyStar Portfolio Manager
 - EUI = Annual Energy Use (kBtus) / Building(s) Gross Area (ft²)
- When Required by code/law
 - Seattle Tune-Up = ASHRAE Level I Audit
 - ➤ Washington State Clean Budlings Act = if EUI not met → ASHRAE Level II Audit
- Noticeable increase in energy costs
- Sale or Acquisition of Asset
- Persistent Occupant Discomfort/Complaints
- Pressurization Issues
- In preparation or replacements/upgrades
- Validation of Capital Expenditures

Levels

- ASHRAE Level I
 - Walk Through Analysis [Quick]
 - ✓ Establish a baseline [EnergyStar/Bills]
 - High Level Equipment Assessment [Age, Condition, Useful Life]
- ASHRAE Level II
 - Energy Survey and Analysis
 - ✓ Trending/Metering
 - ✓ Detailed Equipment Analysis
 - \checkmark High Level ROM pricing and ROI calcs. for ECM's

ASHRAE Level III

- Detailed Analysis of Intensive Capitol Improvements
- ✓ Investment Grade
- ✓ Energy Modeling
- ✓ Geared for ESCO or Major Projects



JUINNES

Qualified Person/Company

Who to trust?

- Recommend to utilize objective 3rd Party
- > ASHRAE Level I Existing Service provider may be ok
- ASHRAE Level II Formal RFQ/RFP may be overkill. Must be someone you trust, experienced, and a creative thinker!
- AHSRAE Level III Formal RFP/RFQ. Recommend to also procure 3rd party review/oversight if needed.

Qualified Person/Company

Where to look?

- Trusted Consultant with Audit experience
 - > Ask for reference or sample report
- Peer Recommendation
- ➤ Utility
 - Start with Utility if rebate is main goal
- > IFMA Directory
- Northwest Energy Efficiency Council website
 - https://www.neec.net/

Focus of Audit

- Have Goal of Audit Clear and Defined
 - Discuss with Facilities for insight and buy-in
- Compare Proposal to ASHRAE Guidelines
 - Does not need to be the same but should be close
- Align Expectations With Budget
- > Controls
 - Start trends early if possible
 - If no or limited Digital Controls, expect to see data loggers used
- Establish Report Format/Deliverables Early
 - Include equipment inventory?
 - Carbon reduction goals?
 - Net Neutral/Positive?
 - What rebates to target?
 - Request ECM review tool with filters
 - Spreadsheet
 - PowerBI

Focus of Audit – PowerBI sample format

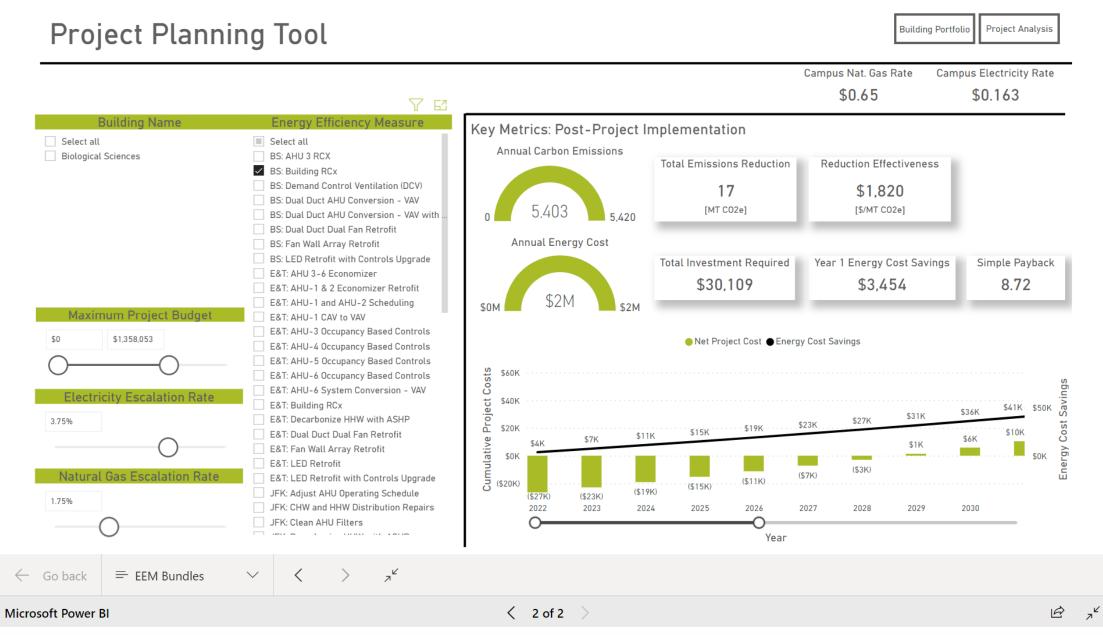
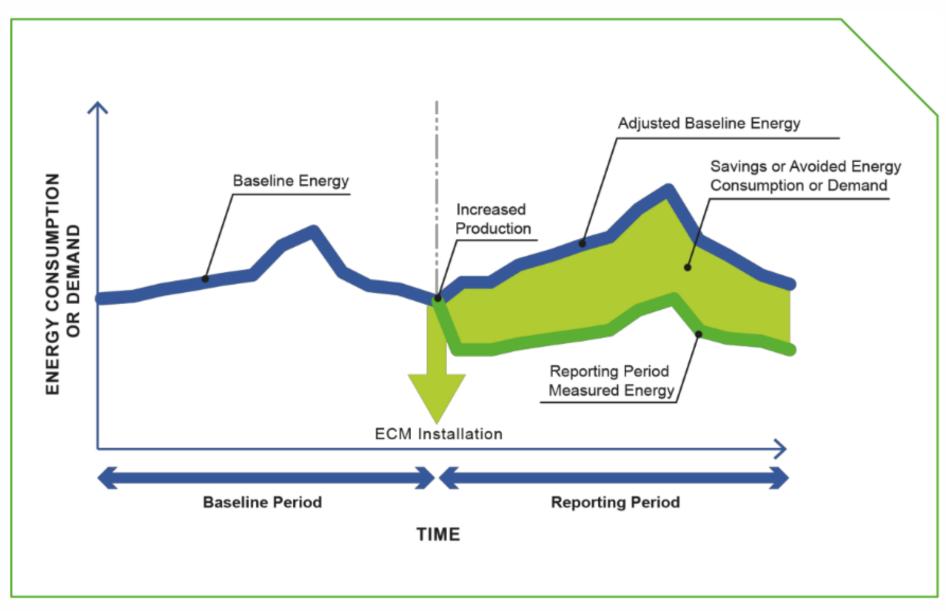



Image courtesy of Glumac

M&V Overview


Measurement and Verification" (M&V) is the process of planning, measuring, collecting and analyzing data for the purpose of verifying and reporting energy savings within an individual facility resulting from the implementation of energy conservation measures (ECMs). Savings cannot be directly measured, since they represent the absence of energy use. Instead, savings are determined by comparing measured use before and after implementation of a project, making appropriate adjustments for changes in conditions

- Standard is The International Performance Measurement and Verification Protocol (IPMVP)
- Now governed by non-profit Efficiency Valuation Organization (EVO)
 - https://evo-world.org/en/
- Complements Audits, Proactive Maintenance and New Project Planning
- Will be key part of Energy Management Plan (EMP). This EMP plan is required for Washington State Clean Buildings Act (WSCBA) Compliance. 12 months data required.

M&V and WSCBA

M&V Savings

Goals of M&V

- Increase Clarity of Energy Use
 - Energy savings come from actions based on M&V data
- Tenant Billing
- > Rebates
- Project Justification/Validation
- Feedback for Future Designs/Remodels
- Manage Energy and Maintenance Budgets
- Calculate Emission Reductions
- Fault Detection
- Preventative Maintenance

What To Meter?

Sub-Meter type, accuracy and locations will be based on goal

- Identify this in M&V Plan
- Encourage to make meter a long-term asset. You get what you pay for!
- > There are meters available for almost any budget, large or small.
- Can be phased implementation if budget is limited.
- M&V can apply to one system or whole building
 - Define "Measurement Boundary" in M&V Plan
- Different Operational Verification Approaches
 - Visual Inspection
 - Sample Spot Measurements
 - Short Term Performance Testing
 - Data Trending/Controls Review

Consider applying IAQ sensors at the same time

Meter Types

Application	Meter Category	Meter Types	Typical Accuracy	Relative Cost	Best Uses	Special M&V Issues
AC Current (amps)	Current transformer (CT)	Solid torroid or split core transformer	+/-1%			Not for use where power factor is less than 100%, or there is sinewave distortion
AC Voltage (volts)	Voltage leads or 'potential transformer' (PT)	Solid torroid or split core transformer				
AC Electric Power (watts) or AC Energy (watthours)	True RMS watt meter or watthour meter	Measure watts (or amps volts and power factor), and watthours. Use digital sampling (IEEE 519-2014) to properly measure distorted waveforms				Necessary for inductive loads (e.g., motors, ballasts) or circuits with harmonics from components such as a variable speed drive
Runtime (hours)	Measure and record equipment operating periods	Battery operated		Lower cost than watthour recording	Logging of lighting periods	For equipment having a constant power usage rate when on
Temperature (degrees)	Resistance Temperature Detector (RTD)		Reasonable	Low cost	Air and water	Widely used. Take care to compensate for different lead lengths
	Thermo-couple		High	High		Narrow range. Suited to thermal energy metering. Need signal amplifiers
Humidity (%)						Regular re-calibration required
Liquid Flow (units/sec)	Intrusive	Differential Pressure	+/- 1-5% of max			
		Positive Displacement	+/-1%			
		Turbine, or hot tap insertion turbine	+/-1%		Clean fluid, straight pipe	
		Vortex Shedding	High			
	Non-intrusive	Ultrasonic	+/-1%		Straight pipe	Spot flow measurement
		Magnetic		High		
		Bucket & Stopwatch		Low	Steam condensate, plumbing outlet fixture	Spot flow measurement
Pressure		Digital manometer	+/- 2%			
Thermal Energy	Packaged flow and temperature logging and computation	Uses accurate flow and temperature sensors. For steam may need pressure and temperature sensors	<1%	High		Use matched temperature sensors for measuring a temperature difference. Carefully manage all possible sources of erro

Table 3. Key Meter Types

Alternate Meter Types

Data Loggers

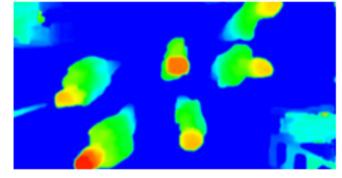
Images courtesy of Onset

Alternate Meter Types

People Counters

Good for verifying occupancy and ultimately can be used in lieu of CO2 sensors

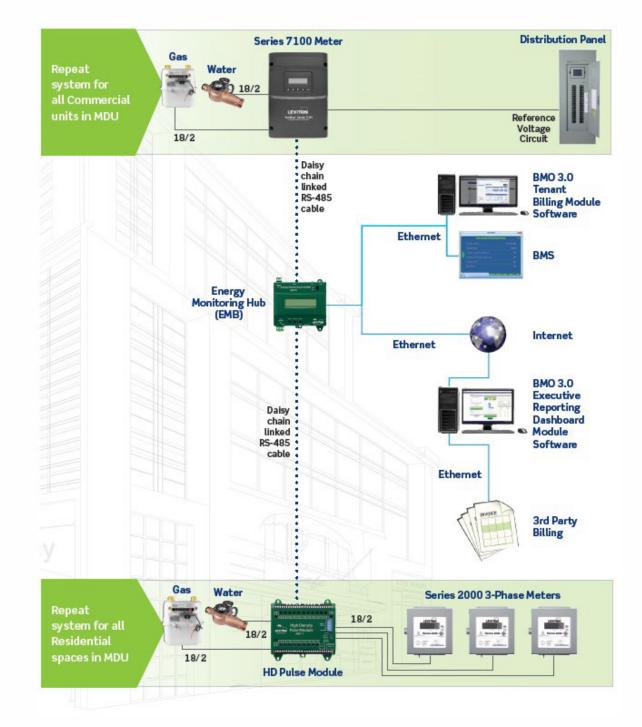
Robust Operation


Resistant to all kinds of external influences, such as shadows, light changes and heat emission.

Up to 9 sensors can be stitched into a single view for large area monitoring.

Employee Exclusion

Take accuracy to the next level by removing employee traffic from your data set by equipping staff with specially designed tags.



Future Proof

25 year MTB. Installed sensors can be upgraded in the field with firmware upgrades and new features. Artificial intelligence lays the foundation for future concepts.

Meter Integration/Data Collection

- Limitation of Legacy Systems
 - System may not have ability to provide enough relevant information
 - Building usage is different than when DDC was initially installed
 - System speed, cable type, and memory
- Periptery Systems Have Limits
 - Brand specific requirements
 - If controls under service warranty/contract, may have to use existing service provider to integrate 3rd party meters
- Not enough open/free points in DDC Panels
- Check the protocol!
 - BacNet
 - > Lon
 - Modbus

M&V Report Content

- Project Background
- ECM Descriptions
- M&V operation utilized
- Reporting period start/end dates
- M&V Activities
 - Start/end time for measurement period
 - Energy use data
 - Data for statistic variables used
 - Description of inspections
 - Verified savings calcs. and methodologies
 - Data analysis methods
 - Source data for calcs
 - > Details on baseline or savings adjustments
 - Utility cost details
 - Clear presentation of verified energy/cost savings in comparison to proposed savings

Fault Detection & Analytics

- Typically a software that is overlayed on top of the DDC controls system
 - Skyspark
 - BuildingFit
 - CopperTree
 - Clockworks
 - Building Logix
 - > Turntide
- Utilizes algorithms and equations to identify potential issues
- Output is data that must be analyzed
- Does not replace Audit
- Must be reviewed regularly and acted upon to be effective!

Fault Detection & Analytics – Building Fit Sample

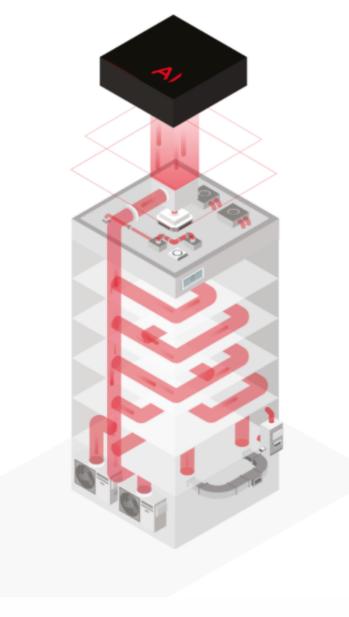
Fault Detection & Analytics – BrainBoxAl

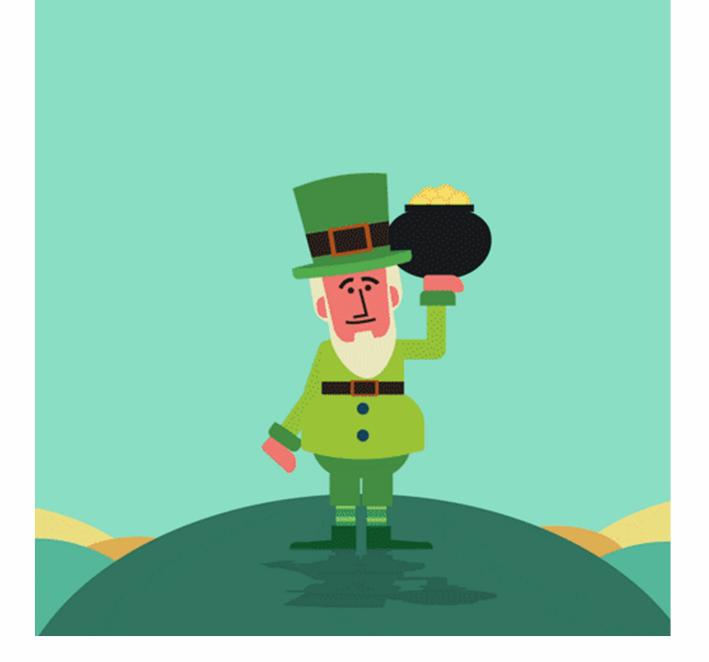
Self adapting artificial intelligence

- Decisions Based on Deep Learning Algorithms
- Cloud Based Computing
- Micro Pushes every 5 minutes
- Claims up to 25% reduction in total energy costs
- Better tenant comfort

Three step process

- Mapping points and leaning system behavior (6-8 weeks)
- > Optimizes HVAC operation in real time (micro pushes)
- Continuously learning and improving
- Requires extreme attention to detail at deployment
 - Point mapping verification and re-verification!
 - Expect to refine operation before "set it and forget it"
 - Recommend to require that installer includes remote Cx for a min of 6 months with monthly reporting




Image courtesy of BrainBox AI

Summary

- Know your EUI
 - > 5 points or more below EUI target in WSCBA. See table 7-2a in WSCBA Performance Standard
- Find an objective partner for Audits
- > Know the standards or hire a 3rd party who does to oversee Audit/M&V process

Overlap project planning

- Audit should include M&V recommendations
- Create Energy Management and Operations and maintenance Plan (required for WSCBA)
- Good opportunity for inventory/CMMS?
- Plan out next 30+ years and begin building budgets now for long term assets
- ➢ If EUI not met, start planning for WSCBA compliance now
- You are in control of how deep to go with M&V
 - Get the level of monitoring that meets your needs
 - Be cautious of under/over metering
 - Establish equipment/system level basslines before replacements/renovations
 - ➢ If you have extreme budget constraints, use data loggers!
- Fault Detection software is great but must be acted upon to be effective
 - > Consider identifying an Energy Manger on staff and carve out time for them to review and act on alerts

May misfortune follow you the rest of your life and never catch up